If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+9=10
We move all terms to the left:
a^2+9-(10)=0
We add all the numbers together, and all the variables
a^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $
| 43=2d+17 | | 2(d=7)-1=8d/4+13 | | 0.25x=−5+0.75x+1.28 | | 13=2k-5 | | 4x+6(x+4)=120 | | 33=3g+6 | | 6r+2r=0 | | 1=3-2x | | 3b^2+9b-22=2b^2 | | 3=14-k | | 5y/6=196 | | 9=q-3 | | -9+9j=10j | | 9x-4(3x-2)=44 | | 20=s+4 | | 3x+1+6x-6=43+x | | -10r=100 | | 20=s | | 6+4k=6k-8 | | 13=c-9 | | -2+4q=-7-4q+3q | | 15x-6=15x-6 | | 7=2b+10 | | n/10=-8 | | -17+3n=+7n+11 | | 15x+4-x=2(8x+2)-2x | | 43=8w-5 | | 8k=-3+9k | | 90=(2x-3)+(3x+8) | | b2-8b=0 | | -1/2(8m+6)=17 | | -4p+35=15 |